
DOLPHIN INTEGRATION

Missing EDA Links

dolphin-integration.com/eda
solutions@dolphin.fr

SLED is available identically under Linux and Windows.

SLED 1.8

Multi-level modeling is essential to be able to simulate complex subsystems in a reasonable amount of time
and even to make simulations feasible. SLED 1.8 focuses on delivering relevant features for
smoother model management and browsing as well as for flexible mixed-signal and multi-
domain netlisting.

On top of that, this release of SLED also provides the means to set directives directly in the schematic in
order to create more complete testbenches. The directives can be parameterized from the property editor
and selectively enabled or ignored during netlisting depending on the design context.

Multi-level and
multi-domain modeling

 Batch scripting API for automating design creation, check, migration and data search…
 Management of directives for simulation and layout from schematic
 Capability to check disciplines and bus expressions with the Design Rule Checker
 Automatic passing of parameters to instances when defined at schematic level
 Simplified pin order declaration
 Improved capabilities and features of the Project Explorer

• Possibility to drag, copy, duplicate cells
• Grouping of cells with tags
• Renaming of designs, libraries, cells and views

 Improved bus creation with auto-incrementing of bus names
 Possibility to define schematic references locally using reference symbols

• Electrical power supply / ground, mechanical reference…
 Improved Verilog netlisting through support of disciplines and management of references
 Symbols for graphic structural assembly of models from the VDA Library
 Increased interoperability with LayED (TexEDA Layout Editor) with XNDL netlist generation

KEY FEATURES

Graphical assembly of a testbench using
VDA library models New project explorer

Symbol

Model parameters

Reference symbol

DOLPHIN INTEGRATION

Missing EDA Links

dolphin-integration.com/eda
solutions@dolphin.fr

SLED is available identically under Linux and Windows.

SLED 1.8

SLED 1.8 provides a batch scripting API to automate repetitive tasks and increase productivity. Designers
can save a lot of time by using the scripting API and can focus on creative tasks!

Improved productivity
with scripting API

 Speed: Manual time-consuming tasks can be performed in a very short time with scripts
 Reliability: A well-written script reduces risks compared to manual changes.
 Automation: Scripts are the best ally for the automation of design flows.
 Maintainability: Scripts can be efficiently and explicitly commented. Even if comments are not

written in the code, the user can easily understand what the script does by reading it; compared to
manual actions that leave no trace.

 Feasibility: Some repetitive tasks, such as drawing matrices, can only be realistically performed
by script.

KEY BENEFITS OF THE SCRIPTING API

\brief Method to replace instances of the specified cell with the other specif
@param inLibrary the identifier of the library where to replace insta
@param inCellNameToChange the name of the cell which instances will be replace
@param inNewLibrary the identifier of the library where the replacing ce
@param inNewCellName the name of the cell replacing the previous
proc Migrate {inLibrary inCellNameToChange inNewLibrary inNewCellName} {

 # this pre-declaration is needed by tcl to use the enum type value SLED_CellV
 global SLED_CellViewType_SCHEMATIC
 # get the identifier of the new cell in the specified library
 set theNewCell [SLED_LibraryFindCell $inNewLibrary $inNewCellName]
 # define iterators
 set theIterCell [SLED_IterCellCreate]
 set theIterCellView [SLED_IterCellViewCreate]
 set theIterInstance [SLED_IterInstanceCreate]
 # iteration on the cells in the library to proceed
 for {SLED_IterCellBegin $theIterCell $inLibrary} {[SLED_IterCellIsNotDone $th
 set theCell [SLED_IterCellContent $theIterCell]
 # iteration on the schematics in the cell
 for {SLED_IterCellViewBegin $theIterCellView $theCell $SLED_CellViewType_
 set theSchematic [SLED_CellViewConvertToSchematic [SLED_IterCellViewC
 # iteration on the instances of the schematic
 for {SLED_IterInstanceBegin $theIterInstance $theSchematic} {[SLED_It
 set theInstance [SLED_IterInstanceContent $theIterInstance]
 …
 }
 }
 # do not forget to delete the iterators after use
 SLED_IterInstanceDelete $theIterInstance
 SLED_IterCellViewDelete $theIterCellView
 SLED_IterCellDelete $theIterCell
}

Application examples of the scripting API are available in the example directory of SLED.
They can serve as basis for your specific needs.
For more information, have a look at the User Manual!

Example of a script which
updates transistor instances to
use symbols from a different
library in order to migrate a
design to another technology

